edexcel 쁯

Mark Scheme (Results)

Summer 2015

Pearson Edexcel GCE
in Further Pure Mathematics FP2
(6668/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015
Publications Code UA041567
All the material in this publication is copyright
© Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symboh will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- \quad The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as $A \mathrm{ft}$, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $|p q|=|c|$, leading to $\mathrm{x}=\ldots$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $|p q|=|c|$ and $|m n|=|a|$, leading to $\mathrm{x}=\ldots$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^{2}+b x+c=0:\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, q \neq 0$, leading to $\mathrm{x}=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $\left(x^{n} \rightarrow x^{n-1}\right)$

2. Integration

Power of at least one term increased by 1. $\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

Method mark for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

June 2015 Home
 6668 FP2
 Mark Scheme

Question Number	Scheme	Marks
1 (a)	$\begin{aligned} & (x+2)(x+3)^{2}-12(x+3)=0 \quad \text { OR } \frac{(x+3)(x+2)-12}{(x+3)}>0 \\ & (x+3)\left(x^{2}+5 x-6\right)=0 \quad(x+3)(x+6)(x-1)=0 \end{aligned}$	M1
	$\begin{aligned} & \text { CVs: } \quad-3,-6,1 \\ & -6<x<-3, \quad x>1 \\ & \text { OR: } \quad x \in(-6,-3) \cup(1, \infty) \end{aligned}$	B1,A1,A1 dM1A1 (6)
(b)	$x>1$	$\begin{array}{\|ll} \mathrm{B} 1 & \begin{array}{c} \text { (1) } \\ {[7]} \end{array} \end{array}$

(a)

M1
Mult through by $(x+3)^{2}$ and collect on one side or use any other valid method (NOT calculator)
Eg work from $\frac{(x+3)(x+2)-12}{(x+3)}>0$
NB: Multiplying by $(x+3)$ is not a valid method unless the two cases $x>3$ and $x<3$ are considered separately or -3 stated to be a cv
B1 for -3 seen anywhere
A1A1 other cvs (A1A0 if only one correct)
dM1 obtaining inequalities using their critical values and no other numbers. Award if one correct inequality seen or any valid method eg sketch graph or number line seen correct inequalities and no extras. Use of \ldots or „, scores A0. May be written in set notation.

No marks for candidates who draw a sketch graph and follow with the cvs without any algebra shown. Those who use some algebra after their graph may gain marks as earned (possibly all)
(b) B1 correct answer only shown. Allow $x \ldots 1$ if already penalised in (a)

Question Number	Scheme	Marks
2 (a)	$\begin{aligned} & \|z\|=4 \\ & \arg z=\arctan \left(\frac{-2 \sqrt{3}}{2}\right)=\arctan (-\sqrt{3})=\frac{2 \pi}{3} \text { or } 120^{\circ} \end{aligned}$	B1
(c)	$\begin{aligned} & z^{6}=\left(4\left(\cos \frac{2 \pi}{3}+\mathrm{i} \sin \frac{2 \pi}{3}\right)\right)^{6}=4^{6}(\cos 4 \pi+\mathrm{i} \sin 4 \pi) \text { or } z^{6}=\left(4 \mathrm{e}^{\mathrm{i} \frac{2 \pi}{3}}\right)^{6} \\ & =4096 \text { or } 4^{6} \text { or } 2^{12} \end{aligned}$ (a) and (b) can be marked together $z^{\frac{3}{4}}=4^{\frac{3}{4}}\left(\cos \frac{2 \pi}{3}+\mathrm{i} \sin \frac{2 \pi}{3}\right)^{\frac{3}{4}}=4^{\frac{3}{4}}\left(\cos \frac{\pi}{2}+\mathrm{i} \sin \frac{\pi}{2}\right)$	M1 A1 cso (2)
	$\begin{aligned} & 4^{\frac{3}{4}}\left(\cos \left(\frac{2 \pi}{3}+2 n \pi\right)+\mathrm{i} \sin \left(\frac{2 \pi}{3}+2 n \pi\right)\right)^{\frac{3}{4}} \\ & (n=0 \text { see above }) \\ & n=1 \quad w=2 \sqrt{2} \text { oe } \\ & n=2 \quad w=-\mathrm{i} 2 \sqrt{2} \text { oe } \end{aligned}$	M1
	$n=3 \quad w=-2 \sqrt{2} \quad$ oe	A1A1 (4) [9]

(a) B1 Correct modulus seen Must be 4

M1 Attempt arg using arctan, nos either way up. Must include minus sign or other consideration of quadrant. $\left(\arg =\frac{\pi}{3}\right.$ scores M0)
A1 $\frac{2 \pi}{3}$ or 120° Correct answer only seen, award M1A1
(b) M1 apply de Moivre

A1cso 4096 or 4^{6} Must have been obtained with the correct argument for z
(c) B1 For $w=\mathrm{i} 2 \sqrt{2}$ or any single correct root (0 or 0 i may be included in all roots) in any

Form including polar
M1 Applying de Moivre and use a correct method to attempt 2 or 3 further roots
A1A1 For the other roots (3 correct scores A1A1; 2 correct scores A1)
Accept eg $2 \sqrt{2}, \sqrt{8}, 2.83,64^{\frac{1}{4}}, 4^{\frac{3}{4}}, 4096^{\frac{1}{8}} \quad$ Decimals must be 3 sf min .
ALT 1 $z^{3}=64=w^{4} \Rightarrow w=(\pm) 2 \sqrt{2} \quad(\pm$ not needed $)$

B1
for (c): Use rotational symmetry to find other $2 / 3$ roots
Remaining roots as above

M1
A1A1

ALT 2: $\quad z^{4}=64 \quad z^{2}= \pm 8$
$z= \pm 2 \sqrt{2} \quad z= \pm \sqrt{-8}= \pm \mathrm{i} 2 \sqrt{2}$
B 1 any one correct, M1 attempt remaining $2 / 3$ roots; A1A1 as above

Question Number	Scheme	Marks
3	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{y}{\tan x}=3 \cos 2 x \\ & \int \cot x \mathrm{~d} x=\ln \|\sin x\|, \quad \mathrm{IF}=\sin x \\ & \sin x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y \cos x=3 \cos 2 x \sin x \\ & y \sin x=\int 3 \cos 2 x \sin x \mathrm{~d} x \\ & y \sin x=\int 3\left(2 \cos ^{2} x-1\right) \sin x \mathrm{~d} x \end{aligned} y \sin x=\frac{3}{2} \int(\sin 3 x-\sin x) \mathrm{d} x, \begin{aligned} & y \sin x=3\left[-\frac{2}{3} \cos ^{3} x+\cos x\right](+c) \\ & y \sin x=\frac{3}{2}\left[-\frac{1}{3} \cos 3 x+\cos x\right](+c) \\ & y=\frac{3 \cos x-2 \cos ^{3} x+c^{\prime}}{\sin x} \text { oe } \\ & y=\frac{-3 \cos 3 x+3 \cos x+c^{\prime}}{2 \sin x} \end{aligned}$	M1 M1A1 dM1A1 B1ft [6] (A1 on e-PEN)

M1 Divide by tan and attempt IF $\mathrm{e}^{\int \cot x d x}$ or equivalent needed
M1 Multiply through by IF and integrate LHS
A1 correct so far
dM1 dep (on previous M mark) integrate RHS using double angle or factor formula
$k \cos ^{2} x \sin x \rightarrow \pm \cos ^{3} x, k \sin ^{2} x \cos x \rightarrow k \sin ^{3} x, \cos 3 x \rightarrow \pm \frac{1}{3} \sin 3 x, \sin 3 x \rightarrow \pm \frac{1}{3} \cos 3 x$
A1 All correct so far constant not needed
B1ft obtain answer in form $y=\ldots$ any equivalent form Constant must be included and dealt with correctly. Award if correctly obtained from the previous line
Alternatives for integrating the RHS:
(i) By parts: Needs 2 applications of parts or one application followed by a trig method.

Give M1 only if method is complete and A1 for a correct result.
(ii) $y \sin x=\int 3\left(1-2 \sin ^{2} x\right) \sin x \mathrm{~d} x=\int 3 \sin x-6 \sin ^{3} x \mathrm{~d} x$

Then use $\sin 3 x=3 \sin x-4 \sin ^{3} x$ to get $y \sin x=\int \frac{3}{2}(\sin 3 x-\sin x) \mathrm{d} x$ and integration shown above - both steps needed for M1

	ALTERNATIVE: Mult through by $\cos x$ $\sin x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y \cos x=3 \cos 2 x \sin x$ $y \sin x=\int 3 \cos 2 x \sin x \mathrm{~d} x$ Rest as main scheme	M1

Question Number	Scheme	Marks

(a) M1 Multiply out brackets May remove common factor r^{2} first

A1 a correct statement
A1 fully correct solution which must include at least one intermediate line
ALT: Use difference of 2 squares:
M1 remove common factor and apply diff of 2 squares to rest
A1 $\quad r^{2}(r+1+r-1)(r+1-(r-1))$
$=r^{2}(2 r \times 2)$
A1 $=4 r^{3}$
(b) M1 Use result to write out a list of terms; sufficient to show cancelling needed Minimum 2 at start and 1 at end $\sum_{1}^{n} 4 r^{3}$ or $\sum_{1}^{n} r^{3}$ need not be shown here or for next mark
A1 Correctly extracting $n^{2}(n+1)^{2}$ as the only remaining non-zero term.
A1 Obtaining $\sum_{1}^{n} r^{3}=\frac{1}{4} n^{2}(n+1)^{2}$
A1cso (Shown B1 on e-PEN) for deducing the required result.
Working from either side can gain full marks
Working from both sides can gain full marks provided the working joins correctly in the middle.
If \boldsymbol{r} used instead of \boldsymbol{n}, penalise the final A mark.

(a) M1 re-arrange to $z=\ldots$.

A1 correct result
dM1 dep (on first M1) using $|z|=2$ with their previous result
ddM1 dep (on both previous M marks) use $w=u+\mathrm{i} v$ (or eg $w=x+\mathrm{i} y$) and find the moduli. Moduli to contain no is and must be + . Allow 9 or 3 and 4 or 2
A1 for a correct equation in u and v or any other pair of variables
dep (on all previous M marks) re-arrange to the form of the equation of a circle (same coeffs for the squared terms

A1A1
deduce circle and give correct centre and radius. Completion of square may not be shown. Deduct 1 for each error or omission. (Enter A1A0 on e-PEN)
Special Case: If $z=\frac{3 \mathrm{i} w}{w-1}$ obtained, give M1A0 but all other marks can be awarded.
(b) Mark diagram only - ignore any working shown.

B1ft No numbers needed but circle must be in the correct region (or on the correct axis) for their centre and the centre and radius must be consistent (ie check how the circle crosses the axes) B0 if the equation in (a) is not an equation of a circle.
B1 Region inside the correct circle shaded. (no ft here)

Question Number	Scheme	Marks

ALTERNATIVE for 5(a): Let $z=x+\mathrm{i} y$ $\begin{aligned} & w=\frac{x+\mathrm{i} y}{x+\mathrm{i}(y+3)} \\ & =\frac{(x+\mathrm{i} y)(x-\mathrm{i}(y+3))}{(x+\mathrm{i}(y+3))(x-\mathrm{i}(y+3))} \\ & =\frac{x^{2}+y^{2}+3 y-3 \mathrm{i} x}{x^{2}+y^{2}+6 y+9} \end{aligned}$ $\frac{3 y+4-3 \mathrm{i} x}{6 y+13} \quad \text { as }\|z\|=2 \Rightarrow x^{2}+y^{2}=4$ $w=u+\mathrm{i} v \text { so } u=\frac{3 y+4}{6 y+13} \quad v=\frac{-3 x}{6 y+13}$ Using $u=\frac{\frac{1}{2}(6 y+13)}{6 y+13}-\frac{\frac{5}{2}}{6 y+13}$ $\begin{aligned} & u^{2}+v^{2}=\frac{9 y^{2}+24 y+16+9 x^{2}}{(6 y+13)^{2}}=\frac{24 y+52}{(6 y+13)^{2}}=\frac{4}{6 y+13} \\ & =\frac{8}{5}\left(\frac{1}{2}-u\right) \\ & \therefore 5 u^{2}+5 v^{2}+8 u=4 \end{aligned}$ Then as main scheme: Circle, centre, radius	M1 A1 dM1 ddM1 A1 dddM1 A1A1 (8)

M1 Rationalise the denominator - must use conjugate of the denominator
A1 Expand brackets and obtain correct numerator and denominator
dM1 Use $x^{2}+y^{2}=4$ in their expression to remove the squares
ddM1 Equating real and imaginary parts
A1 \quad Correct expressions for u and v in terms of x and y
dddM1 Uses $u^{2}+v^{2}=\ldots$ to eliminate x and y and obtain an equation of the circle
A1A1 As main scheme

(a)M1 using $r \sin \theta \quad r \cos \theta$ scores M0
dM1 Attempt the differentiation of $r \sin \theta$, inc use of product rule or $\sin 2 \theta=2 \sin \theta \cos \theta$
A1 Correct 3 term quadratic in $\cos \theta$
ddM1 dep on both M marks. Solve their quadratic (usual rules) giving one or two roots
A1 Correct quadratic solved to give $\theta=\frac{\pi}{3}$
A1 Correct r obtained No need to see coordinates together in brackets
Special Case: If $r \cos \theta$ used, score M0M1A0M0A0A0to
(b)M1 Use of correct area formula, $\frac{1}{2}$ may be seen later, inc squaring the bracket to obtain 3 terms - limits need not be shown.
M1 Use double angle formula (formula to be of form $\cos ^{2} \theta= \pm \frac{1}{2}(\cos 2 \theta \pm 1)$) to obtain an integrable function - limits need not be shown, $\frac{1}{2}$ from area formula may be missing,
dM1 attempt the integration - limits not needed - dep on $2^{\text {nd }} \mathrm{M}$ mark but not the first
A1 correct integration - substitution of limits not required
A1 correct final answer any equivalent provided in the demanded form.

Question Number	Scheme	Marks
7 (a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 \tan x \sec ^{2} x$	B1
	$\begin{array}{l\|l} \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=2 \sec ^{4} x+4 \tan ^{2} x \sec ^{2} x \\ =2 \sec ^{4} x+4\left(\sec ^{2} x-1\right) \sec ^{2} x & \begin{array}{l} \frac{\mathrm{d} y}{\mathrm{~d} x}=2 \tan x\left(1+\tan ^{2} x\right) \\ \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=2 \sec ^{2} x+2 \times 3 \tan ^{2} x \sec ^{2} x \\ =2 \sec ^{2} x+6\left(\sec ^{2} x-1\right) \sec ^{2} x \end{array} \end{array}$	M1 A1
	$=6 \sec ^{4} x-4 \sec ^{2} x \quad *$	A1cso (4)
(b)	$\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}=24 \sec ^{3} x \sec x \tan x-8 \sec ^{2} x \tan x$	M1A1
	$=8 \sec ^{2} x \tan x\left(3 \sec ^{2} x-1\right)$	A1cso (3)
(c)	$y_{\frac{\pi}{3}}=(\sqrt{3})^{2}(=3) \quad\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)_{\frac{\pi}{3}}=2 \sqrt{3} \times\left(\frac{2}{1}\right)^{2}(=8 \sqrt{3})$	B1(both)
	$\left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right)_{\frac{\pi}{3}}=6 \times 2^{4}-4 \times 2^{2}=80$	
	$\left(\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}\right)_{\frac{\pi}{3}}=8 \times 4 \times \sqrt{3}\left(3 \times 2^{2}-1\right)=352 \sqrt{3}$	M1 (attempt both)
	$\tan ^{2} x=y_{\frac{\pi}{3}}+\left(x-\frac{\pi}{3}\right)\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)_{\frac{\pi}{3}}+\frac{1}{2!}\left(x-\frac{\pi}{3}\right)^{2}\left(\frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}\right)_{\frac{\pi}{3}}+\frac{1}{3!}\left(x-\frac{\pi}{3}\right)^{3}\left(\frac{\mathrm{~d}^{3} y}{\mathrm{~d} x^{3}}\right)_{\frac{\pi}{3}}$	
	$=3+8 \sqrt{3}\left(x-\frac{\pi}{3}\right)+40\left(x-\frac{\pi}{3}\right)^{2}+\frac{176}{3} \sqrt{3}\left(x-\frac{\pi}{3}\right)^{3}$	M1A1 (4)[11]

(a)B1 $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 \tan x \sec ^{2} x$

M1 attempting the second derivative, inc using the product rule or
$\sec ^{2} \theta=\tan ^{2} \theta+1 \quad$ Must start from the result given in (a)
A1 a correct second derivative in any form
A1cso for a correct result following completely correct working $\sec ^{2} \theta=\tan ^{2} \theta+1$ must be d seen or used

Question Number	Scheme	Marks

(b) M1 attempting the third derivative, inc using the chain rule

A1 a correct derivative
A1 a completely correct final result
(c) B1 $y_{\frac{\pi}{3}}=(\sqrt{3})^{2}$ or 3 and $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)_{\frac{\pi}{3}}=2 \sqrt{3} \times\left(\frac{2}{1}\right)^{2}$ or $8 \sqrt{3}$

M1 obtaining values for second and third derivatives at $\frac{\pi}{3}$ (need not be correct but must be obtained from their derivatives)

M1 using a correct Taylor's expansion using $\left(x-\frac{\pi}{3}\right)$ and their derivatives. (2! or 2, 3! or 6 must be seen or implied by the work shown) This mark is not dependent.
A1 for a correct final answer Must start $\tan ^{2} x=\ldots$. or $y=\ldots . . \mathrm{f}(x)$ scores A0 unless defined as $\tan ^{2} x$ or y here or earlier. Accept equivalents eg awrt 610 (609.6...) $\sqrt{371712}$ But no factorials in this final answer.

Question Number	Scheme	Marks
$\mathbf{8 (a)}$	$x=\mathrm{e}^{u} \quad \frac{\mathrm{~d} x}{\mathrm{~d} u}=\mathrm{e}^{u} \quad$ or $\frac{\mathrm{d} u}{\mathrm{~d} x}=\mathrm{e}^{-u} \quad$ or $\frac{\mathrm{d} x}{\mathrm{~d} u}=x$ or $\frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{1}{x}$ B1 $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x}=\mathrm{e}^{-u} \frac{\mathrm{~d} y}{\mathrm{~d} u}$ $\frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=-\mathrm{e}^{-u} \frac{\mathrm{~d} u}{\mathrm{~d} x} \frac{\mathrm{~d} y}{\mathrm{~d} u}+\mathrm{e}^{-u} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} u^{2}} \frac{\mathrm{~d} u}{\mathrm{~d} x}=\mathrm{e}^{-2 u}\left(-\frac{\mathrm{d} y}{\mathrm{~d} u}+\frac{\mathrm{d}^{2} y}{\mathrm{~d} u^{2}}\right)$ $x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-7 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+16 y=2 \ln x$ $\mathrm{e}^{2 u} \times \mathrm{e}^{-2 u}\left(-\frac{\mathrm{d} y}{\mathrm{~d} u}+\frac{\mathrm{d}^{2} y}{\mathrm{~d} u^{2}}\right)-7 \mathrm{e}^{u} \times \mathrm{e}^{-u} \frac{\mathrm{~d} y}{\mathrm{~d} u}+16 y=2 \ln \left(\mathrm{e}^{u}\right)$ $\frac{\mathrm{d}^{2} y}{\mathrm{~d} u^{2}}-8 \frac{\mathrm{~d} y}{\mathrm{du}}+16 y=2 u$ $*$	M1

(a) B1 for $\frac{\mathrm{d} x}{\mathrm{~d} u}=\mathrm{e}^{u}$ oe as shown seen explicitly or used

M1 obtaining $\frac{\mathrm{d} y}{\mathrm{~d} x}$ using chain rule here or seen later
M1 obtaining $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ using product rule (penalise lack of chain rule by the A mark)
A1 a correct expression for $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ any equivalent form
dM1 substituting in the equation to eliminate x Only u and y now Depends on the $2^{\text {nd }} \mathrm{M}$ mark
A1cso obtaining the given result from completely correct work

ALTERNATIVE 1	
$x=\mathrm{e}^{u} \quad \frac{\mathrm{~d} x}{\mathrm{~d} u}=\mathrm{e}^{u}=x$	
$\frac{\mathrm{~d} y}{\mathrm{~d} u}=\frac{\mathrm{d} y}{\mathrm{~d} x} \times \frac{\mathrm{d} x}{\mathrm{~d} u}=x \frac{\mathrm{~d} y}{\mathrm{~d} x}$	
$\frac{\mathrm{~d}^{2} y}{\mathrm{~d} u^{2}}=1 \frac{\mathrm{~d} x}{\mathrm{~d} u} \times \frac{\mathrm{d} y}{\mathrm{~d} x}+x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}} \times \frac{\mathrm{d} x}{\mathrm{~d} u}=x \frac{\mathrm{~d} y}{\mathrm{~d} x}+x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}$	B1
$x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=\frac{\mathrm{d}^{2} y}{\mathrm{~d} u^{2}}-\frac{\mathrm{d} y}{\mathrm{~d} u}$	
$\left(\frac{\mathrm{~d}^{2} y}{\mathrm{~d} u^{2}}-\frac{\mathrm{d} y}{\mathrm{~d} u}\right)-7 x \times \frac{1}{x} \frac{\mathrm{~d} y}{\mathrm{~d} u}+16 y=2 \ln \left(\mathrm{e}^{u}\right)$	M1
$\frac{\mathrm{d}^{2} y}{\mathrm{~d} u^{2}}-8 \frac{\mathrm{~d} y}{\mathrm{du}}+16 y=2 u \quad *$	M1A1

B1 As above
M1 obtaining $\frac{\mathrm{d} y}{\mathrm{~d} u}$ using chain rule here or seen later
M1 obtaining $\frac{\mathrm{d}^{2} y}{\mathrm{~d} u^{2}}$ using product rule (penalise lack of chain rule by the A mark)

Question Number	Scheme	Marks

A1 Correct expression for $\frac{\mathrm{d}^{2} y}{\mathrm{~d} u^{2}}$ any equivalent form
dM1A1cso As main scheme

| ALTERNATIVE 2: | |
| :--- | :--- | :--- |
| $u=\ln x \quad \frac{\mathrm{~d} u}{\mathrm{~d} x}=\frac{1}{x}$ | B1 |
| $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{1}{x} \frac{\mathrm{~d} y}{\mathrm{~d} u}$ | |
| $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-\frac{1}{x^{2}} \frac{\mathrm{~d} y}{\mathrm{~d} u}+\frac{1}{x} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} u^{2}} \times \frac{\mathrm{d} u}{\mathrm{~d} x}=-\frac{1}{x^{2}} \frac{\mathrm{~d} y}{\mathrm{~d} u}+\frac{1}{x^{2}} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} u^{2}}$
 $x^{2}\left(-\frac{1}{x^{2}} \frac{\mathrm{~d} y}{\mathrm{~d} u}+\frac{1}{x^{2}} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} u^{2}}\right)-7 x \times \frac{1}{x} \frac{\mathrm{~d} y}{\mathrm{~d} u}+16 y=2 u$
 $\frac{\mathrm{~d}^{2} y}{\mathrm{~d} u^{2}}-8 \frac{\mathrm{~d} y}{\mathrm{du}}+16 y=2 u$ $*$ | M1 |
| | M1A1 |

See the notes for the main scheme.
There are also other solutions which will appear, either starting from equation II and obtaining equation I , or mixing letters x, y and u until the final stage.
Mark as follows:
B1 as shown in schemes above
M1 obtaining a first derivative with chain rule
M1 obtaining a second derivative with product rule
A1 correct second derivative with 2 or 3 variables present
dM1 Either substitute in equation I or substitute in equation II according to method chosen and obtain an equation with only y and u (following sub in eqn I) or with only x and y (following sub in eqn II)
A1cso Obtaining the required result from completely correct work

Question Number	Scheme	Marks
(b)	$m^{2}-8 m+16=0$ $\begin{aligned} & (m-4)^{2}=0 \quad m=4 \\ & (\mathrm{CF}=)(A+B u) \mathrm{e}^{4 u} \end{aligned}$	$\begin{aligned} & \text { M1A1 } \\ & \text { A1 } \end{aligned}$
	PI: try $y=a u+b \quad\left(\right.$ or $y=c u^{2}+a u+b \quad$ different derivatives, $\left.c=0\right)$ $\frac{\mathrm{d} y}{\mathrm{~d} u}=a \quad \frac{\mathrm{~d}^{2} y}{\mathrm{~d} u^{2}}=0$	M1
	$0-8 a+16(a u+b)=2 u$ $a=\frac{1}{8} \quad b=\frac{1}{16}$ oe (decimals must be 0.125 and 0.0625)	dM1A1
	$\therefore y=(A+B u) \mathrm{e}^{4 u}+\frac{1}{8} u+\frac{1}{16}$	B1ft (7)
(c)	$y=(A+B \ln x) x^{4}+\frac{1}{8} \ln x+\frac{1}{16}$	B1 (1)
		[14]

(b) M1 writing down the correct aux equation and solving to $m=\ldots$ (usual rules)

A1 the correct solution $(m=4)$
A1 the correct CF - can use any (single) variable
M1 using an appropriate PI and finding $\frac{\mathrm{d} y}{\mathrm{~d} u}$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} u^{2}}$ Use of $y=\lambda u$ scores M0
dM1 substitute in the equation to obtain values for the unknowns Dependent on the second M1
A1 correct unknowns two or three $(c=0)$
B1ft a complete solution, follow through their CF and PI. Must have $y=$ a function of u Allow recovery of incorrect variables.
(c) B1 reverse the substitution to obtain a correct expression for y in terms of x No ft here x^{4} or $\mathrm{e}^{4 \ln x}$ allowed. Must start $y=\ldots$

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom

